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Numerical solutions are presented for steady, axisymmetric, laminar, isothermal, 
source-sink flow in a rotating cylindrical cavity. These results, which are in good 
agreement with previously published experimental work, have been used to give a 
fresh insight into the nature of the flow and to investigate the validity of other 
theoretical solutions. When the fluid enters the cavity through a central uniform 
radial source and leaves through an outer sink, it is shown that the flow near the disks 
can be approximated by two known analytical solutions. If the radial source is 
replaced by an axial inlet the flow becomes more complex, with a wall jet forming 
on the downstream disk at sufficiently high flow rates. 

1. Introduction 
A rotating cylindrical cavity with a radial outflow of fluid provides a simple model 

of the flow between corotating gas-turbine disks. In the turbine, cooling air usually 
enters axially, through a central hole of radius r = a in one disk, and leaves radially 
through a series of holes in a peripheral cylindrical shroud at  r = b .  Although the flow 
in such systems is almost invariably turbulent and non-isothermal, the study of 
laminar isothermal flow can throw considerable light on the problem. 

Insight into the structure of laminar source-sink flow inside a rotating cavity has 
been provided by Hide (1968). For isothermal radial outflow from a uniform source 
at  r = a to a uniform sink at r = b,  the flow can be divided into four regions : an inner 
source region (which, for some flows, may be so large that the commonly used 
expression ‘source layer’ seems inappropriate) ; separate Ekman layers on each disk ; 
an outer sink layer ; and an interior inviscid core which is bounded by the abovenamed 
layers. Hide obtained analytical solutions for the velocity distribution in the four 
regions by matching the linear Ekman-layer solution to boundary-layer solutions on 
the source and sink; he also provided estimates for the radial extent of the source 
region and the sink layer. 

The accuracy of Hide’s solutions has been investigated by Bennetts & Hocking 
(1973), who computed a nonlinear Ekman-layer solution, and by Bennetts & Jackson 
(1974), who obtained numerical solutions of the Navier-Stokes equations. When the 
volumetric flow rate Q is relatively small, Hide’s linear solution gives a good 
representation of the flow ; as the flow rate is increased, the linear solution becomes 
increasingly less accurate. 

Owen & Pincombe (1980) used flow visualization and laser-Doppler anemometry 
to determine the flow structure and to measure the velocity distribution inside an 
isothermal rotating cavity with radial outflow. Air was admitted to the centre of the 
cavity either axially or radially (through a gauze screen), and the flow left the cavity 
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through a series of holes in the shroud. For the radial inlet case, the flow structure 
was qualitatively (and, for the lower flow rates, it was quantitatively) similar to that 
determined by Hide. The nature and size of the source region was found to depend 
on whether the flow entered axially or radially; in the former case, a wall jet could 
form on the downstream disk, and the radial extent of the source region was greater 
than that of the radial inlet case. For the latter case, the extent of the source region 
was found to be in good agreement with an expression giving the radius at which 
Faller’s (1963) nonlinear Ekman solution gave zero rotation in the core. 

Heat-transfer measurements were made in rotating cavities by Owen & Bilimoria 
(1977) and by Owen & Onur (1983). For the radial-outflow case (where air entered 
the cavity axially, and the downstream disk was heated), a number of turbulent heat- 
transfer regimes were delineated. In  regime I, a t  relatively low rotational speeds, the 
heat transfer was found to be independent of rotational speed; a t  higher speeds, in 
regime 11, the heat transfer increased with both increasing flow rate and increasing 
speed; regimes I11 and IV occurred at even higher rotational speeds where, 
particularly in regime IV, buoyancy forces were significant. 

For non-isothermal laminar and turbulent flow, Owen & Rogers (1983) derived 
integral equations for flow inside an Ekman layer in a rotating cavity with source-sink 
flow; approximate solutions were obtained for the linear equations. Rogers & Owen 
(1983) obtained numerical solutions of the nonlinear integral equations; these 
solutions were shown to be in good agreement with a large range of experimental data, 
for laminar and turbulent source-sink flows, by Pincombe, Owen & Rogers (1983). 
It is worth noting that the criterion, suggested by these authors, for transition from 
laminar to turbulent flow in an Ekman layer is Re, x 180 (where Re, = Q/vr ,  v being 
the kinematic viscosity of the fluid). 

In  this paper, numerical solutions of the Navier-Stokes equations are presented 
for the case of axisymmetric isothermal laminar flow in a rotating cavity with a radial 
outflow. These solutions, which were obtained using the method of Chew (1984), 
provide an essential step towards the ultimate objective of obtaining numerical 
solutions for non-isothermal turbulent flow in a rotating cavity. The solutions are 
compared with the data of Owen & Pincombe and with the analytical results of other 
authors. Section 2 outlines the numerical method and the boundary conditions used, 
and the numerical solutions for the rotating cavity with a radial inlet and with an 
axial inlet are discussed in 993 and 4 respectively. 

2. An outline of the numerical method 
Full details of the numerical method are given by Chew (1984). In  this reference, 

the techniques employed here were shown to give excellent agreement with Hide’s 
(1968) analytical solution in the linear flow regime. For completeness, an outline of 
the method, and details of the boundary conditions are presented below. 

For steady axisymmetric laminar flow, with density p and constant viscosity p, 
the Navier-Stokes and continuity equations can be expressed as 

r 
-~ 

r ar 

(2.1) 

( 2 . 2 )  
r ar 



where u, v, w are the velocity components relative to the cylindrical coordinate system 
r ,  0, z (rotating a t  angular speed l2 about r = 0). The static pressure p is related to 
the reduced pressure p’ by 

p‘ = p--’ Z P  QZr2. (2.5) 
Solutions were obtained for the experimental conditions of Owen & Pincombe 

(1980). For the cylindrical cavity, a = 19 mm, b = 190 mm and s = 50.7 mm 
(the axial width between the two disks); for the air, p = 1.225 kg m-3 and 
p = 1.78 x lop5 kg m-l s-l. 

For the radial inlet tests, the following boundary conditions were used : 

and v=w=O a t  r = a , b ,  (2.6) 
Q u = -  

2nrs 

u=v=w=O a t  z = O ,  (2.7) 

au av - - _ -  - - w = O  at ~ = i s ,  
aZ aZ 

For the axial inlet tests: 

and v=w=O a t  r = b ,  Q u=- 
2nbs 

u = v = o  and a t  z = 0, 0 < r < a,, 

(2.10) 

(2.11) 

u = v = w = O  at z = O ,  a , < r < b ,  (2.12) 

u=v=w=O at z = s ,  O < r < b .  (2.13) 

The axial-inlet radius a, used in the computations was chosen to be midway 
between two grid points; in the finite-difference grid used, this meant that 
a, = 20.2 mm compared with a = 19 mm in the experiments. 

The above equations were converted to finite-difference form and were solved by 
a modified version of the TEACH program (Gosman & Ideriah 1976). One modification, 
made by Chew (1984), introduced step changes in grid size, so as to economize on 
the total number of grid points required, while still obtaining sufficient resolution in 
the boundary layers. Another modification used ‘ Aitken’s extrapolation ’ to accelerate 
the solution of the finite-difference equations. 

For the radial-inlet case, most runs were carried out with a non-uniform finite- 
difference grid with 32 axial and 44 radial locations ; a number of results were repeated 
with different grids to ensure that truncation errors were not significant. For the 
axial-inlet case, it was found that a non-uniform grid with 45 axial lines and 43 radial 
locations were sufficient to reduce truncation errors to insignificant levels. The 
computation was carried out on the University of Manchester’s CDC 7600 computer ; 
typically between 10 and 20 min of CPU time was required. 

To aid interpretation of the numerical results, values of the axisymmetric stream 



454 J .  W.  Chew, J .  M .  Owen and J .  R .  Pincombe 

function were calculated from the velocity solutions, and streamline patterns were 
then produced using a standard contour package. As the plotting program interpolated 
from the finite-difference grid onto a coarser contour-plotting mesh, before inter- 
polating from this grid to get the streamline paths, some distortion of the results in 
this process is inevitable. Although these plots do not give a completely accurate 
representation of the flow, they do give a useful overall picture and provide insight 
into the flow structure. 

3. The radial-inlet case 

number Re, and a Rossby number e,, where 
It is convenient to introduce a dimensionless flow rate C,, a rotational Reynolds 

and 

C, = Q/vb,  

Re, = Qb2/V 

e, = b2C,/4nr2Re$ 

3.1. Comparison with experimental results 

Figure 1 shows a comparison of streamline plots obtained from the numerical results 
and the smoke pattern photographed by Owen & Pincombe (1980) for Re, = 2.5 x lo4 
and C,  = 79.  Note that the flow visualization photograph ( b )  shows reflections a t  the 
surface of the two perspex disks; these should be ignored as they do not form part 
of the flow. This figure shows good agreement between prediction and experiment 
with the size of the different flow regions corresponding almost exactly. 

Numerical solutions were also obtained for the same value of Re, at the higher flow 
rates corresponding to C, = 192, 331 and 605. The main effect of increasing C,  on 
the predicted flow structure shown in figure 1 (a) was an increase in the radial extent 
of the source region. Not surprisingly, the numerical method (which is, of course, 
limited to the steady axisymmetric case) did not predict either the flow instabilities 
within the source region or the cellular structure of the Ekman layers observed 
experimentally a t  the higher flow rates. 

Figure 2 shows a comparison of the numerical predictions with Owen & Pincombe's 
measurements for the radial and tangential components of velocity (obtained using 
laser-Doppler anemometry). Here the radial velocity has been non-dimensionalized 
with division by the inlet velocity U = Q/2nas. Again, the results from the computer 
model are in good agreement with experiment. Owen & Pincombe also measured the 
extent of the source region, but discussion of this is deferred to 33.2. 

3.2. Comparison with analytical results 

For the Ekman layers, (2.1)-(2.4) can be truncated to boundary-layer form; and, for 
small values of the Rossby number, the nonlinear terms can be neglected. The 
resulting solution of the linear Ekman-layer equations is 

V _ -  - - 2e,(1 -e-t cos E-e-6' cos [*), 
SZr 
w = 0, (3.4) 

where 
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r = b  

r = a  
z = 4 2  z = s  

L z 

(a 1 (b ) 

FIQURE 1. Flow structure, for the case of a radial inlet, for Re, = 2.5 x lo4 and C, = 79: (a) 
streamlines in the ( T ,  %)-plane predicted by the numerical method for the half-cavity t e  6 z 6 e ;  
(6) smoke patterns photographed by Owen 6 Pincombe (1980). 

Comparisons between the computed velocities and Hide’s (1968) solution (which 
modifies (3.4) in the source region and in the sink layer) for Re, = 2.5 x lo4 and 
C, = 192 are shown in figure 3. As was found by Bennetts & Jackson (1974), the 
numerical results depart from Hide’s solutions as the flow rate is increased. In 
particular, there is a significant difference between the analytical and numerical 
solutions in the source region. It should be noted that Hide assumed a thin boundary 
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FIGURE 2. Axial distribution of radial and tangential components of velocity, for the case of a radial 
inlet, for Reo = 2.5 x.104 and r / a  = 6.0. 

Flow rate C, 192 331 605 
Numerical solutions - . - . - _ _  __  - 

Owen & Pincombe (1980) x 0 0 

layer on r = a (which is obviously not the case in figure 3) ; he also did not use the 
no-slip conditions for w a t  r = a and r = b.  

Also shown in figure 3 ( b )  is Faller’s (1963) nonlinear solution (truncated to second 
order in er) for the tangential velocity in the core and Rogers & Owen’s (1983) 
nonlinear integral momentum solution. The latter solutions were computed assuming 
v = 0 at r = a,  whereas Faller’s solution is independent of inlet conditions. Neither 
of these methods takes account of the conditions at r = b,  so these solutions cannot 
be expected to be valid in the sink layer. It can be seen that the Rogers & Owen 
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FIGURE 3. Radial and axial distributions of velocity, for the case of a radial inlet, for Re, = 2.5 x lo4 
and C, = 192 : (a) axial distribution of ur at r = 104 mm ; ( b )  radial distribution of ur at z = 26 mm; 
( c )  radial distribution of UT a t  z = 26 m m ;  (d )  radial distribution of wr a t  z = 4 mm. v, Numerical 
solutions; -, Hide (1968); -----, Faller (1963); -.-, Rogers & Owen (1983). 

solution is in reasonable agreement with the numerical results throughout the source 
region and is in good agreement in the core region. Note that in the source region 
Faller’s solution implies that  the fluid rotates in the opposite direction to the disk. 
This clearly contradicts the experimental and numerical results, which show that the 
fluid always rotates in the same sense as the disk, for these inlet conditions. 

I n  their experimental work, Owen & Pincombe estimated the radial extent of the 
source region from the flow-visualization results. They found that, for the radial-inlet 
case, the experimentally observed outer radius of the source region concurred with 
the point a t  which Faller’s solution for the tangential velocity in the core became 
zero (in a stationary frame of reference). Denoting the edge of the source region by 
r = rs ,  Owen & Pincombe’s results may be written 

Table 1 shows a comparison, for Re, = 2.5 x lo4, between the extent of the source 
region (rs-a)  calculated from (3.5) and the ‘90 yo thickness’, calculated from Hide’s 
solution and from the numerical results. Here, the ‘90 yo thickness’ is defined by the 
radius a t  which ru, in the midaxial plane, equals 10 yo of the value a t  r = a ;  the radial 
velocity being preferred to the tangential velocity in this definition, as it is the former 
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Source : rs - a Sink 
Mass-flow 
parameter 90 Yo thickness : 90 yo thickness : Equation 90 yo thickness : 90 yo thickness : 

C, numerical results Hide’s theory (3.5) numerical results Hide’s theory 

0.01 14.9 12.7 - 12.2 12.7 
79 35.8 60.6 37.8 9.7 10.1 

192 63.8 142 69.6 7.3 7.5 
33 1 88.6 243 97.3 5.0 5.4 
605 125.5 - 138.2 3.8 3.4 

TABLE 1. The thickness (mm) of the source region and the sink layer for radial 
outflow with radial inlet, Re, = 2.5 x lo4 

that controlled the advection of smoke into the cavity in the experiments. It can be 
seen that Hide’s theory overestimates the thickness of the source region at the higher 
values of C,, whereas the numerical results for the ‘90% thickness’ are lower than 
those given by (3.5), but follow similar trends, as might be expected. Also included 
in table 1 are the numerical estimates of the ‘ 90 yo thickness ’ of the sink layer ; these 
are consistent with the values obtained from Hide’s theory. 

Some insight into the flow structure within the source region can be gained by 
examining the development of the disk boundary layer. In  figure 4 the computed 
radial velocity profiles across this layer are shown a t  several radial positions for 
Re, = 2.5 x lo4 and C ,  = 79 and 605. Here the velocities are normalized with respect 
to Rr and the non-dimensional variable is used for the axial coordinate. Also shown 
in this figure is the linear Ekman solution (3.4) and von Karman’s (1921) solution 
for the so-called free disk (an infinite disk rotating in a quiescent environment) as 
computed by Cochran (1934). It can be seen that for C,  = 79 the numerical results 
are close to the free-disk solution at the smaller values of r /a  and agree with the 
Ekman solution a t  the larger values of r /a .  For C ,  = 605 the solution appears to 
develop towards that of the free disk as the radius increases. 

It should be noted that within the source region, away from the boundary layers, 
the angular momentum of the fluid can be expected to be conserved as the fluid moves 
radially outwards; thus v+Rr rx l / r  in this region. Also, towards the outer limit of 
the source region, the radial velocity away from the boundary layer will be much less 
than that within the entraining boundary layer, owing to the different axial length- 
scales in these regions. From these considerations it follows that, in considering 
the boundary layer, the values of u and v towards the outer limit of the source region 
may be approximated, respectively, by 0 and -Rr at the edge of the boundary layer. 
As these are exactly the conditions satisfied by von Khrman’s solution, the behaviour 
of the numerical results in figure 4 is not surprising. 

From the above argument and from the numerical results, it  follows that, towards 
the outer part of the source region, the radial flow rate in the disk boundary layer 
is approximately equal to that in von Karmin’s free-disk problem, which from 
Cochran’s solution is given by 

Q, = 0.886m2(vR)k (3.6) 

Note that, although u is assumed to be negligible outside the boundary layer in 
deriving this result, the total radial flow of fluid in the inviscid region may still be 
significant owing to the different axial lengthscales between the two regions. Away 
from the boundary layers, the total radial flow rate is assumed to be zero a t  the outer 
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FIUURE 4. Axial distribution of radial component of velocity, for the case of a radial inlet, for 
Ree = 2 . 5 ~  10': (a) C, = 79; (b )  C, = 605. x , numerical solutions; ----, Ekman-layer solution; 
-, free-disk solution. 

edge of the source region; a t  this point, the flow rate in the boundary layer on each 
disk must be equal to  ?jQ. Hence, to estimate the extent of the source region, it is 
assumed that Qe = ?jQ at r = r,, giving 

b 5 = 0.424 - dW Re$, 
a a (3.7) 

which agrees (within 0.25 %) with (3.5). The derivation given here is perhaps more 
satisfactory than that of Owen & Pincombe, since Faller's solution does not correctly 
predict v at r = rs,  as can be seen from figure 3 ( b ) .  

An interesting feature of the numerical results was that, a t  the higher values of 
C,  studied, some recirculation was predicted a t  the edge of the outer sink layer. This 
is apparent in figure 5, which shows how the computed axial velocity varies with 
radius for four different flow rates a t  z / s  = 0.259 with Re, = 2.5 x lo4. Hide's solution, 
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FIGURE 5. Radial distribution of axial component of velocity, for the case of a radial inlet, for 
Re, = 2.5 x lo4 and z / s  = 0.259. 

Flow rate C,,, 79 192 331 605 
Numerical solutions 0 0 + X 
Hide (1968) --__- __ - . - . - __- 

which does not take account of the no-slip condition at r = b, is also shown. Of course, 
without firm experimental evidence it is not possible t o  say whether or not these 
numerical results would be realized physically. 

4. The axial-inlet case 
4.1. Comparison with experimental results 

Figure 6 shows the comparison between the computed streamlines and the flow 
visualization for C, = 79 and Re, = 2.5 x lo4. I n  the experiments, vortex breakdown 
was observed under these conditions. The experimental results were non-axisymmetric 
in the source region, with the central jet precessing about the axis of the cavity, but 
the flow was axisymmetric outside this region. It is interesting that the numerical 
method, which assumes a steady axisymmetric result everywhere, has converged to 
a solution that appears to agree with the experimental observations outside the 
non-axisymmetric source region. 

At higher flow rates or lower rotational speeds, the inlet jet no longer undergoes 
vortex breakdown, but traverses the cavity and forms a wall jet on the downstream 
disk. This behaviour is displayed by the streamline plots in figure 7 ,  which show the 
results for C, = 331 over a range of different Reynolds numbers. The results for the 
higher values of Re, in this figure indicate that the wall jet breaks down owing to 
the pumping action of the upstream disk, which must entrain half the net flow before 
the Ekman-layer region is formed. Owen & Pincombe’s flow visualization for this class 
of flow showed an axisymmetric wall jet similar to that predicted here. However, in 
the region where fluid is discharged from the wall jet, in the source region away from 
the boundary layers, and in the central jet, their results show non-axisymmetric and 
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(0 )  ( b  ) 

FIGURE ti. Flow structure, for the case of an axial inlet, for Reo = 2.5 x lo4 and C ,  = 79: (a )  
streamlines in the ( r ,  2)-plane predicted by the numerical method, ( b )  smoke patterns photographed 
by Owen & Pincombe (1980). 

unsteady flow instabilities. As stated above, these non-axisymmetric effects cannot 
be predicted by the model used to calculate the results presented in this paper. 

The results in figure 7 show qualitatively how transition between the heat-transfer 
regimes I and 11, discussed in 0 1, may occur. At Re, = 2 x lo3 the main flow is from 
the central inlet jet to the wall jet on the downstream disk and then from the wall 
jet to  the sink. As Re, increases, rotational effects begin to dominate, and an 
Ekman-layer region forms towards the outer part of the cavity. Although a t  higher 
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FIQURE 8. Axial distribution of radial and tangential components of velocity, for the case of an 
axial inlet, for Re, = 2.5 x lo4 and r / a  = 6.0. 

Flow rate C, 192 33 1 
Numerical solutions -.- ___  

Owen & Pincombe (1980) 0 0 

rotational speeds than those shown here the structure of the source region will change, 
i t  seems unlikely that this would affect the experimental results (in which the main 
heat transfer took place in the outer part of the cavity). However, buoyancy forces 
became more important as Re, increases, and so the experimental results can be 
expected to  show effects that do not occur in isothermal flow. 

Comparisons between measured and computed radial and tangential velocity 
components are shown in figure 8 for Re, = 2.5 x lo4 and r la  = 6.0. For C, = 192 this 
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FIGURE 9. Axial distribution of radial component of velocity for the case of an axial inlet, C,,, = 331 : 
(a )  Re, = 2.5 x lo4; (b )  Re, = 1.25 x lo4. x , numerical solution, downstream disk; 0, numerical 
solution, upstream disk ; ----, Ekman-layer solution ; -, free-disk solution. 

value of r / a  is outside the source region, and both the experimental and computed 
results show that the flow is symmetrical about the midaxial centreline ( z / s  = 0.5). 
For C, = 331 the radial velocity provides quantification of the features seen in figure 
7 (f) : the boundary layer on the downstream disk (which is inside the source region) 
is thicker than that on the upstream disk, and a significant amount of reverse flow 
occurs. The tangential velocity near the downstream disk is significantly lower than 
that near the upstream disk. Considering the flow instabilities mentioned above, the 
difference between the numerical and experimental results for C, = 331 near the 
downstream disk, at z = s, is not surprising. Indeed, the similarity between prediction 
and measurement for this case suggests that the effect of the instabilities is localized, 
and the mean motion is very similar to that predicted by the numerical solution. 

4.2. Comparison with analytical results 

The computed values of radial velocity shown in figure 9 give some insight into the 
flow structure 'for the axial-inlet case. As for the radial-inlet case of figure 4, the 
Ekman-layer solution (3.4) and the free-disk solution are shown for comparison, and 
the non-dimensional axial distance 5 is used for both the upstream and the 
downstream disks. It should be noted that in figure 9 ( b )  4 2  5 rather than 5 has been 
used on the horizontal axis; thus, despite the lower rotational speed, the scaling of 
this axis to the dimensional distance x is the same in figure 9 (b )  as it is in figure 9 (a) .  

Looking first a t  figure 9 ( a )  (C, = 331, Re, = 2.5 x lo4), the asymmetry between 
the two disks in the source region ( r / a  < 6.42) is apparent. The flow close to the 
downstream disk is considerably greater than that on the upstream disk within this 
region (owing to the formation of the wall jet noted above). The flow on the upstream 
disk develops from 'free-disk flow' within the source region to Ekman-layer flow a t  
the larger radii ( r / a  > 7.47).  The explanation for this behaviour is similar to that 
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given for the radial-inlet case in $3.2: provided that the angular momentum of the 
fluid discharging from the wall jet is relatively weak, the boundary conditions on the 
upstream-disk layer will approximate to those of von Karman’s problem. Results a t  
a lower rotational speed (Re, = 1.25 x lo4) in figure 9 ( b )  show similar behaviour, 
although Ekman-layer flow does not occur owing to the extension of the source region 
to r / a  > 8.53. The results for r / a  < 4.27 show that rotational speed only has a small 
effect on the radial flow in the wall jet; the speed does, of course, affect the extent 
of the source region. 

Examination of the results for the case of C, = 79, Re, = 2.5 x lo4 (where vortex 
breakdown occurred experimentally) shown in figure 6 suggests that  the disk 
boundary-layer development in this case is very similar to the radial-inlet case. For 
r / a  2 2.7 the velocity profiles close to the two disks are almost identical, and they 
coincide with those given in figure 4 (a ) .  

5. Conclusions 
The computer program described by Chew (1984) has been successfully applied to 

the study of isothermal laminar source-sink flow in a rotating cavity. The numerical 
predictions are in good agreement with previously published experimental and 
analytical results, and have given new insight into the nature of the flow. 

For the case of radial outflow with a radial inlet, the manner in which flow is 
entrained by the disks within the source region is very similar to that of a free disk. 
As a similarity solution is available for this case, the flow over most of the disks’ area 
can be described, to a fair approximation, in terms of this solution and the Ekman-layer 
solution. 

For radial outflow with an axial inlet, the flow structure of the source region is 
generally more complex than for a radial inlet. If vortex breakdown occurs, the flow 
close to the disks is similar to that with a radial inlet ; but, if the flow rate is sufficiently 
high, a wall jet forms on the downstream disk. Although the radial velocities within 
the wall jet are fairly insensitive to rotational speed, the extent of this region, and 
consequently the size of the source region, are dependent on the speed. At high 
rotational speeds the radial component of velocity in the source region near the 
upstream disk is close to the free-disk value. At sufficiently low rotational speeds, the 
wall jet extends to the outer edge of the cavity and the flow goes directly from this 
region to the sink; the flow in the rest of the cavity is then a secondary recirculation. 

The authors would like to thank Dr Ruth Rogers for her helpful comments on this 
work and for supplying the momentum-integral solutions. The financial support of 
Rolls Royce Limited for this project is also gratefully acknowledged. 
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